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Under ESA’s General Studies Programme (GSP) a Consortium consisting of Space
Applications Services NV/SA, LIQUIFER Systems Group and COMEX SA has performed
the Lunar Analogues (LUNA) study, with the objective to identify missing Artificial Lunar
Analogues, taking into account the demands for such analogues and considering existing and
planned analogues, and to establish technical, utilisation and implementation concepts for
the most needed analogues. This paper describes the approach and results of the study. Most
emphasis will be given to the ‘European Surface Operations Laboratory — ESOL’, the
Analogue Concept selected by ESA for further consideration. The ESOL facility is proposed
to be implemented at the EAC/DLR site in Cologne, in order to make maximal use of
existing facilities (European Astronaut Centre, :envihab, etc.) and already available specific
expertise and human capital.

Definitions

Natural Lunar Analogues are terrestrial analogue environments like deserts, craters or other surfaces on Earth which
are representative for terrain, soil, etc. of the Moon.

Artificial Lunar Analogues are human-made terrestrial facilities and/or tools that provide conditions that are
analogue to specific conditions on the Moon or to conditions in human-made environments on the Moon (e.g. a
lunar lander or habitat), and that can be used to simulate and train lunar exploration missions. Artificial Lunar
Analogues can be physical, virtual or a combination of both.

Mixed Lunar Analogues are human-made terrestrial facilities that are placed in a natural analogue environment.
Examples are the Aquarius underwater habitat used in the frame of the NASA Extreme Environment Mission
Operations (NEEMO) program or the Deep Space Habitat used in the frame of the NASA Desert RATS (Research
and Technology Studies) campaigns.
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I. Introduction

In view of lunar exploration, which is foreseen to be one of the next steps in human space exploration, lunar
analogues are and will continue to be powerful tools to support the development, demonstration and validation of
new technologies and operational concepts. Furthermore lunar analogues will serve as training environment for
astronauts and will engage the public with interesting and exciting mission simulations well before actual missions
take place.

Natural Lunar Analogues have the advantage that they simulate certain aspects of the lunar environment “for
free”, i.e. terrain, soil and harsh environment (dust, temperature, psychological effects, etc.). However there are
limitations in their simulation capacity and also logistics disadvantages as Natural Analogues are often in remote
locations and the deployment of people and equipment is then complicated and costly.

Therefore, there is a growing interest in Artificial Lunar Analogues in order to avoid the disadvantages of the
Natural Lunar Analogues. The main benefits of working with Artificial Lunar Analogues are':

1)  Ability to control the inside/outside environment (e.g. ‘inside’ for a lunar habitat or ‘outside’ for a rover

testbed).

2) Standardization of the analogue and tests in order to allow a meaningful comparison between several
simulation campaigns. The reduction of noise factors, like weather or climate at the Natural Analogue site,
result in improved test quality.

3) Features that are not available in Natural Analogues such as gravity offloading devices, habitats, or high-
fidelity (even icy) regolith.

4) Significantly reduced logistical preparations and costs compared to simulation campaigns in Natural
Analogues.

5) Increased (net) test-time compared to Natural and Mixed Analogues, because reduced logistics (easier
access) and independence from weather noise factors (an Artificial Analogue is weather-independent)
allow more test runs within a given campaign period.

6) Easier access and lower cost stimulate earlier integrated operations simulation campaigns with different
hardware and test communities. This leads to an increased knowledge transfer amongst all involved
partners and to more robust hardware and better mission operations concepts.

7) Easier access and higher attraction for the general public, thus higher outreach potential compared to
Natural Analogues.

Under ESA’s General Studies Programme (GSP) a Consortium consisting of Space Applications Services
NV/SA (prime), LIQUIFER Systems Group and COMEX SA has performed the Lunar Analogues (LUNA) study .
The objective of this ESA study was to identify the needs for Artificial Lunar Analogues, to analyse whether
existing and planned Artificial Lunar Analogues in Europe and worldwide are sufficient to meet those needs, or
whether there are gaps in analogue capacity, and to conceive new Artificial Lunar Analogues as a response to the
identified gaps. )

Natural Lunar Analogues are not considered in this study (as they were already addressed in the CAFE study").
Furthermore, the study focuses on ‘Robotic and Human Exploration on the Moon’, i.e. lunar surface operations.
Therefore lunar analogue needs related to proximity, landing and rendez-vous & docking operations are not
considered.

I1. Needs Analysis

A. Needs identification and classification

A Needs Database was drawn from the NASA Space Technologies Roadmap™, ESA Exploration Technology
Roadmap"™, ESA Lunar Design Reference Mission (DRM)' and ISEGC (International Space Exploration
Coordination Group) Global Exploration Roadmap", followed by reviewing and parsing relevant technical papers
from various journals and conferences.

For Human Research purposes, the study team relied particularly on the NASA Analogue Assessment Tool
Report (AATR)"". The AATR was created under the aegis of the NASA Human Research Program. It comprises a

" ESA GSP study, carried out by a consortium led by Space Applications Services NV/SA under contract No.
4000111890, from October 2014 until December 2015.
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list of desirable characteristics of Analogues identified by psychologist and human behaviour scientists for
Behavioural Health and Performance (BHP) research in order to achieve comparability to long duration human
spaceflight missions.

An additional source of inputs for the Needs Database were 106 Subject Matter Experts (SMEs) (out of 276
SMEs that were addressed) from all over the world and from all relevant disciplines. The SMEs responded to a
questionnaire that was aimed at soliciting SME views on what is relevant / required / of interest to them in the
context of Artificial Lunar Analogues.

Ten of these SMEs have been consulted throughout the subsequent phases of the Lunar Analogues study for further
in depth interviews and overall advice with respect to the proposed Artificial Analogue concepts.

In total, the whole process of needs identification resulted in 159 individual Needs identified. These 159 Needs
were than ranked according to their prominence in the roadmaps, reference missions and publications, and with
respect to their importance for the SMEs. 19 Needs came out with a high significance rating. These Needs are called
the “driving Needs’ and can be categorized in 6 main groups, see figure 1.
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B. Technical Features (TFs) and Fidelity Characteristics (FCs)

To each of the identified Needs key specifications of an Analogue that would meet/address this Need
(irrespective of whether such Analogue exists or not) are attributed. These key specifications are called Technical
Features (TFs) and Fidelity Characteristics (FCs). Technical Features (TFs) are physical features that can be
included in an Analogue (e.g. a regolith testbed, a control room, communications set-up for delayed
communications). Fidelity Characteristics (FCs) concern BHP research and describe the fidelity of simulation
campaigns for satisfying BHP Needs (e.g. crew autonomy or physical isolation). They were identified based on the
AATR. TFs and FCs were used by the study team in order to determine how well each identified Need can be
addressed. A certain Need can only be fully addressed by a certain Artificial Analogue, when the Analogue has the
right combination of Technical Features and Fidelity Characteristics, i.e. a combination that corresponds to the TFs
and FCs of the respective need.

I11. Catalogue of exisiting Artificial Analogues

A. Scope of the Artificial Analogues Catalogue

In parallel with the establishment of the Needs Database a catalogue of existing Artificial Analogues that can be
utilized for mission simulation and preparation of future lunar missions has been developed. This catalogue is not
limited to facilities in ESA Member States, but gives an overview on facilities available worldwide.
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The Artificial Analogues catalogue is complementary to the past ESA study “Concepts for Activities in the Field
for Exploration (CAFE)” that provides a survey of Natural Analogues. It can also be seen as complementary to the
ongoing effort by the International Human Space Flight Analog Research Coordination Group (HANA) to set up a
catalogue of Ground-based Flight Analogues whose scope is only Human Space Flight, which does not make
distinctions between Natural and Artificial Analogues, and which targets long duration space flight (does not
necessarily focus on the Moon).

In order to limit the range of the study, a separation was drawn between “Artificial Analogues” and “Testbeds”.
Artificial Analogues are facilities that allow simulation of a range of specific aspects of space missions within a
controlled environment. Testbeds (or Test Facilities) on the other hand allow to simulate and test only one specific
aspect of a space condition (e.g. in a thermal vacuum chamber), but they do not allow to simulate a whole mission
scenario (e.g. field exploration with a robot or astronaut). Testbeds are not included in the Artificial Analogues
catalogue.

B. Artificial Analogues catalogue in a nutshell

The research performed as part of this study led to the identification of 47 facilities in the world, with a high
number of facilities located in Europe and the US. The list is not exhaustive; additional facilities exist e.g. in China,
Russia and India, but the available data on those are sparse.

The survey and geographic mapping of facilities showed that in Europe a cluster of various facilities exists in
Cologne and in Torino. The DLR site (German Aerospace Center) in Cologne offers the possibility to combine
several facilities, e.g. the European Astronaut Centre (EAC) and the :envihab, DLR for complex mission
simulations; the TAS-I and ALTEC facilities can do so in Torino. A similar situation can be stated for the US at
NASA'’s Johnson Space Center (JSC). In the Artificial Analogues catalogue each facility has been characterized by
its Technical Features and Fidelity Characteristics, which were already introduced for the establishment of the
Needs Database.

IV. Gap Analysis

A. Gap Analysis approach

The methodology used for identifying the gaps in current Artificial Analogue infrastructure is based on
attributing Technical Features (TFs) and Fidelity Characteristics (FCs) to the identified Needs and the
characterization of the existing Artificial Analogues by exactly the same TFs and FCs. Theoretically, a facility that
possesses/matches all the TFs and FCs of a Need, completely satisfies that Need. Reality, however, is more
complex, and whether a facility will perfectly satisfy a need will depend on the specifics of the individual TFs and
FCs, on the characteristics of the very tests to be performed, and many other factors.

Nevertheless, linking the individual Needs and the available Analogues, using the TFs and FCs as a bridge,
effectively connects the results of the Needs Identification and the list of available Analogues, providing valuable
information to what extent the Needs are fulfilled by the existing Analogue infrastructure and what Needs may be
lacking infrastructure to support them. And, while being a simplified representation of the complexities of the large
picture, it will be a powerful tool to be used for the ‘gap analysis’. A ‘Needs vs. Analogues mapping matrix’ has
been established, as presented in Figure 2. This matrix contains the percentage of TFs or FCs that each facility
satisfies, per Need. Finally, this allows to identify the gaps in the existing Analogue infrastructure.

Analogues Analogues
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TFs/FCs connected to each need \, TFs/FCs each analogue has

Figure 2 Gap Analysis methodology: creation of the ‘Needs vs. Analogues mapping matrix’
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B. Gap Analysis results

Following the Needs significance rating and subsequent analysis, which confirmed that the 19 ‘driving Needs’
provide a good coverage of the different groups of Needs, the gap analysis has been performed on these ‘driving
Needs’. The following gaps have been identified:

Facilities allowing to perform regolith excavation, material transfer, handling, and processing — both with rovers
and astronaut EVA tools — are currently not available in Europe. There is a special interest (also worldwide) in
facilities to test water-volatile extraction and separation from lunar polar icy material. Furthermore various European
science and engineering communities would benefit from the availability of medium/large amount of physical
fidelity lunar simulant in combination with an area which can be used for 3D printing/constructing with the lunar
regolith simulant.

Worldwide there is a gap in facilities allowing to study the impact of dust in various system interfaces.
Habitat/vehicle egress/ingress facilities need to be available, operating in a context involving regolith simulant, also
electrostatically charged. Furthermore, the habitat should allow (semi-)closed loop ECLSS research and
demonstration, e.g. for the European MELISSA, and BHP related research.

Exploration roadmaps highlight the importance of testing advanced human-robot cooperation strategies. A
permanent analogue facility that supports this kind of tests would be a valuable asset. The thriving field of space
teleoperations in Europe would gain from having access to a setup allowing for robotic control, with AOS/LOS,
bandwidth throttling, and communication delay, in combination with Lunar terrain features and soil simulant.

Active response robotic off-loading for crew in pressurized suits is missing worldwide, for short sleeve it exists
in the US, but it is missing in Europe. Integrating active response robotic off-loading into an artificial Lunar
Analogue would benefit from the combination with a regolith simulant testbed; this combination of Technical
Features is a worldwide gap, too.

Analogue facilities suited for high-level integrated simulations, combining a habitat, lunar terrain, a Mission
Control Centre (MCC), related communications simulations, relevant environmental characteristics, and software
allowing for system level simulations are not easily available to European researchers and operations developers.

V. ‘European Surface Operations Laboratory — ESOL’ Analogue Concept

The gap analysis performed resulted in the identification of gaps, but it also gave an indication which existing
Analogue Facilities in Europe already have a good potential (i.e. address several Needs of the user community) and
thus constitute ‘prime locations’ for evolving towards a more complete Artificial Lunar Analogue Facility. The
study considers the following three prime locations as particularly interesting for establishing an Artificial Lunar
Analogue:

o The Hydrosphere facility in Marseille, France.
e The ALTEC/TAS-I facilities in Torino, Italy.
e The EAC/DLR site in Cologne, Germany.

For each of these prime locations, the study developed a broad concept for an Artificial Lunar Analogue.

Based on the three broad concepts, which were presented at the Mid-Term-Review of the study, ESA has
selected the EAC/DLR Analogue Concept for further consideration with respect to refining the technical concept,
establishing utilisation scenarios and implementation concepts. This analogy facility is referred to as the ‘European
Surface Operations Laboratory’ or ‘ESOL’.

A. ESOL Technical Concept

The DLR site in Cologne, Germany, contains several existing analogue facilities — facilities at :envihab and at
the European Astronaut Centre (EAC) — which makes it a good base to implement an Artificial Lunar Analogue
facility.

The EAC facilities already include the Neutral Buoyancy Facility (NBF), Classroom and Auditorium
infrastructure, a Mission Control / Simulation Control Centre set-up and the big Training Hall in which a large area
can be dedicated to new components of the Artificial Analogue. Besides the above mentioned on-site facilities, EAC
contains a very specific and valuable human capital: directly relevant expertise and know-how from the astronauts,
astronaut instructors, flight surgeons and astronaut medical support team, and education & outreach people.

The following components are proposed to be implemented in the EAC Training Hall in order to perform lunar
mission simulations: regolith simulant testbed, habitat sized for two to four crew-members for simulations of max.
two weeks (the SHEE habitat — Self Deployable Habitat for Extreme Environments, developed in a European FP7
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project between 2012 and 2015), two EVA suit mock-ups (usable in dry environment, like in the regolith simulant
testbed, but also in water immersion partial gravity, like in the NBF), a gravity off-loading system (for humans,
compatible with the EVA suit mock-ups, and for rovers), a system level simulator, full motion simulator (6 degree
of freedom lunar rover simulator with a virtual reality rendering of the lunar surface), a Mission Control Centre
(MCC), an EVA and MCC information system (chest and wrist displays for the EVA suit and system allowing to
introduce communication delays, bandwidth throttling, etc.), a widely compatible robot control station, and a food
growth facility. Furthermore, a ~1000sgm rover testbed, featuring lunar terrain morphology, is proposed to be built
in a new greenhouse-type building next to the EAC building. This big testbed would also be valuable for the purpose
of testing 3D-printing of larger structures by means of solar sintering of lunar regolith simulant or other techniques.

This Lunar Analogue facility is mainly intended as a ‘Mission-Focused-Analogue’, i.e. for highly integrated
simulations with robots and humans, to test mission scenarios, stress timelines and operations, examine remote
operations and procedures, and to train astronauts for lunar surface operations. However, individual components of
the analogue facility can also be used for research or V&V work in a more specific area, e.g. the regolith testbed for
testing rovers, ISRU processes or 3D printing, the Habitat for testing ECLSS components and aspects of habitability
and Human Factors, etc.
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Fiéure 3 European S'Urface Operations Laboratory — ESOL Lunar Analogue concept (:envihab, Neutral Buoyancy
Facility and big rover testbed are not shown)

The European Surface Operations Laboratory —ESOL- facility is mainly intended as a ‘Mission-Focused-
Analogue’, however, the analogue is also considered a Laboratory, in the widest sense of the word, where research
and training can be performed. The acronym ESOL also hints to the Latin name for the Sun “Sol”, a term also used
to refer to solar days on extra-terrestrial bodies.

One of the ESOL Unique Selling Propositions (USP) is that this Artificial Analogue is designed such that the
habitat and full motion simulator are completely integrated with the regolith simulant testbed via a suit port module.
l.e. astronauts can enter/exit the regolith simulant testbed from/to the habitat or the traverse simulator and perform
EVA surface operations activities in their EVA suit mock-ups without having to enter in the ‘outside world’.
Another USP is the availability of a gravity off-loading device in combination with a regolith simulant testbed,
which is covering a worldwide gap in Analogue infrastructure.

In the ESOL concept, the :envihab facility can be used for doing pre- and post-simulation BDCs (Baseline Data
Collection), for isolation studies that leverage the operational fidelity of the analogue at EAC, for simulating crew in
a cis-lunar habitat (in the ‘living and simulation area’ of :envihab) and crew on the lunar surface (in the SHEE
habitat at EAC) or for researching the effects of exploration atmospheres on crew.

VI. ESOL Utilisation Concepts

A. ESA HERACLES / HOPE-1 simulations

HERACLES (Human-Enhanced Robotic Architecture and Capability for Lunar Exploration and Science) is an
ESA-led project preparing for Moon robotics tele-operations from a cis-lunar habitat. The HERACLES Operations
Preparation Experiment (HOPE-1) is a ground-only experiment focusing on the rover operations part; it is conceived
as a 7-days simulation with one crew member in the analogue habitat, performing rover tele-operations as part of
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his/her representative daily schedule (exercise, maintenance, meals) and isolated from the outside world, except for
voice and data links with the Mission Control Centre. The HOPE-1 preparatory runs could be performed entirely at
ESOL, involving the SHEE Habitat, Mission Control Centre (incl. delayed communications) and the large rover
testbed.

B. Yearly ESA-organised integrated analogue mission

For this yearly integrated analogue mission simulation the crew could be selected from the current ESA
astronaut corps and volunteers from the International Partners astronaut corps (similar to the selection of the crew
for the CAVES and NEEMO analogues).

This yearly analogue mission simulation could typically be used for testing/validating new operations concepts.
ESA/ESTEC personnel would have the opportunity to test and operate their hardware developments in an
operational context: ECLSS systems (e.g. Water Treatment and Black Water Treatment breadboards, or the
Microbial Detection in Air System for Space - MIDASS) in a habitat with a two to four person crew, dust mitigation
technologies, ISRU systems with icy regolith and chemical fidelity regolith simulants (e.g. the Lunar PROSPECT
drill and payload for thermochemical extraction of volatiles), rovers locomotion with physical fidelity simulants, and
tele-operation over delayed and bandwidth throttled communication links. See also Figure 6 for an example of an
integrated analogue mission scenario in ESOL.

EAC could develop towards the Human Space Missions operations knowledge centre of ESA and would be able
to test and validate new operations concepts proposed by Working Groups and Industry involved in the development
of exploration architecture and ConOps for planetary missions: varying number of 1V and EVA crew, different
communication strategies taking into account communication delays, evaluating different EVA Tasks & Tools (from
geology to IT), and human-robot cooperations.

Principle Investigators (PIs), researchers from academia, industry and public research institutes could be offered
the opportunity to participate via open or targeted Announcements of Opportunity (AOs).

C. ESA Long-term isolation studies

ESA acknowledges the need for further isolation campaigns of up to 90 days and has recently (summer 2015) set
up for this purpose an Isolation Steering Committee. Campaigns similar to the ones performed by the NASA Human
Research Program (HRP) in the HERA habitat can be conducted at ESOL with the unique capability that the
analogue habitat is completely integrated via a node with the regolith simulant testbed and with the full motion
simulator.

This allows for EVA surface operations activities of the crew directly from the habitat performing egress/ingress
via the suitports as well as simulating long traverses in a pressurized rover, therefore enabling isolation studies in an
operationally relevant environment. An enhancement of the SHEE habitat in terms of volume and life support, in
order to host 4 to 6 crew members, would however be recommended.

—k /’/“
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|

Figure 4 Habitat analogue, regolith simulant testbed and full motion simulator co

D. Spaceship EAC utilization

The main objective of ‘Spaceship EAC’ is to develop operational concepts and low-TRL-technologies in support
of Human Spaceflight exploration missions (with specific focus on lunar habitation scenarios).

Recently the ‘Spaceship EAC’ project has gathered some strong momentum. In May 2015, the Spaceship EAC
team had 15 members (13 interns or PhD students, 1 ESA staff and 1 full time research fellow). In the coming years
Spaceship EAC aims to attract yearly 30-50 Master thesis and/or PhD students, under supervision of 2-3 research
fellows. Currently on-going projects are covering energy research (e.g. lunar based fuel cell system, energy storage
using lunar regolith), additive manufacturing via processing and sintering of lunar regolith, water purification and
recycling (e.g. hydroponics and plant growth experiment with DLR), and simulation/habitability research (e.g.
virtual lunar base and EVAS).
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The ESOL lunar regolith simulant testbed, the SHEE habitat, the Virtual Reality Surface Simulator and the
System Level Simulator would allow bridging research and operations for the Spaceship EAC projects.

E. German Aerospace Centre (DLR) utilization

The ESOL facility, being proposed for the DLR site in Cologne, would stimulate the ‘on-site’ research groups in
testing and validating new technologies. For this purpose the ESOL facilities would be used in a non-integrated
fashion, i.e. as a laboratory or testbed. A good example is the DLR Institute of Materials Physics in Space which
could make use of the regolith testbed with high fidelity physical and chemical lunar regolith simulants for testing
ISRU processes like 3D printing. DLR is already performing an ESA GSTP study about ‘a building block to test 3D
printing of a future lunar base’ and leads the consortium in the European Union H2020 RegoL.ight project about
‘automated 3D printing via sintering of lunar regolith simulant with solar light’.

Also with the medical research groups at DLR there would be a cross-fertilisation: ESOL offers complementary
facilities to :envihab for tests with humans. E.g. an integrated simulation can be conducted in ESOL and test subjects
can be examined in :envihab (pre- and post- Baseline Data Collections).

Tt Fa i
Figure 5 ESOL and :envihab integrated simulations for simulations with humans
F. STEM utilization

The International Space University (ISU) is interested in the field of analogue simulation for educational
purposes. It could be proposed to ISU to organize a yearly ‘three-day Analogue Simulation Campaign’ as part of the
MSc curriculum or Space Studies Programme (SSP) hosted in Strasbourg, France. This way students could get the
full overview of what a space mission to the Moon/Asteroid encompasses, they could act as analogue astronauts in
the habitat and during EVAs, but also as operators in the Mission Control Centre (Flight Director, Crew
Communicator, Robot Operator, etc.).

Shorter sessions could be proposed for high schools and universities around Cologne.

A yearly lunar rover competition could be organized in the regolith testbed / rover testbed of the ESOL. In
analogy with NASA’s Robotic Mining Competition on an analogue Martian terrain, the ESA Lunar Rover
Competition could target university-level students and could challenge them to design and build a mining robot that
can traverse the simulated Lunar terrain. The rover could for example excavate the lunar regolith simulant and the
icy regolith simulant and return the excavated mass for deposit into a sample box.

G. Commercial utilization
ESOL could be offered to companies/industry on a commercial basis for research or demonstrations in an
operational lunar analogue environment.

H. Public outreach

Being located on the DLR site in Cologne and focused in and around the European Astronaut Centre (EAC), the
ESOL facility would have a big potential for public outreach activities. With the prospect of having a European
astronaut flying to the International Space Station every year for the coming years and with the objective of EAC to
further establish itself as one of the top-three centres in the world for astronaut training and human spaceflight
medical operations, the EAC and the ESOL facility will have a high visibility towards International Partners,
researchers and the general public. Furthermore, almost daily guided visits to the DLR research laboratories and the
EAC facilities are organised and the bi-annual German Space Day attracts up to 60,000 visitors.

While the ESOL facility and components are in the first place designed to be functional and to address the
identified needs, they are also visually attractive, hence it would be a perfect and inspiring location for PR events
(e.g. TED talks, public lectures).
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Figure 6 Example ESOL utilisation scenario for a highly integrated mission simulation
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VIl. ESOL Phased Implementation approach

The implementation of ESOL foresees a phased approach in order to accommodate budget constraints (spreading
the implementation costs over a longer timeframe), while ensuring that the first phase of implementation and the
growth or evolution path of the ESOL reflects the most promising utilisation scenarios. Components and ROM cost
estimates per implementation phase are given in Table 1.

Phase 1 includes the SHEE habitat analogue (for 2 persons), the regolith testbed, the large rover testbed and
MCC (incl. delayed communications). Hence, the Phase 1 implementation would allow short duration studies with
small crews in a highly integrated analogue setting. Implementing the regolith testbed and the large rover testbed in
Phase 1 reflects the Spaceship EAC, the DLR-RegoLight and the HERACLES/HOPE-1 utilisation scenario.

The regolith simulant testbed should be the first component to be implemented (potentially already in a pre-
phase 1) as it is addressing most of the ‘driving needs’ and it is for the public a highly visible component (i.e. a
‘footprint of the lunar surface’). The European Astronaut Centre (EAC) is currently developing this pre-phase 1
lunar analogue facility in collaboration with the German Aerospace Centre (DLR). The facility will comprise of a
large regolith testbed area located between the existing EAC facility and DLR :envihab building, with a half
spherical fully enclosing dome structure housing the testbed. The perimeter of the structure is given with a diameter
of 34m — the effective surface operations area is projected to be approximately 900m?, inclusive of experiment
preparation areas. The testbed will comprise of a lunar regolith simulant sourced from the local Eifel region volcanic
and basalt sources.

Phase 2 includes the adaptation of the SHEE habitat to provide a simulation platform for short term isolation
studies with crews of 2 to 4. Furthermore the Full Motion Simulator and the Partial Gravity Off-Loading device
would be added. Both additions are enlarging the analogue simulation capabilities and allow even more integrated
simulations. The addition of the Partial Gravity Off-Loading device in combination with the regolith testbed would
close a worldwide gap in analogue capability. Hence, the implementation of Phase 2 provides better analogue
capabilities for the ESA/International Partners Integrated Analogue Mission Simulation and the ESA/International
Partners Isolation Studies utilisation scenarios.

Phase 3 —consisting of the implementation of a full-fledged second habitat and food growth facility— would
finally allow implementing the Isolation Studies Scenario, i.e. isolation of up to 90 days in the Habitat, with crews
of 4 to 6 (this would meet the current requirement for European Isolation studies).

x

| SHEE Habitat | X Enhancement (airtight)  Second SHEE
‘

X Enhancement

System

2 suits High fidelity EVA Tools

X Enhancement

Station

:

x

:

;

x
;

Basic facility Enhancement

Utilisation scenarios | * ISRU, Dust * HERACLES /| HOPE-1 « EVA Tasks & Tools * Long Duration
= Robotics, preparatory simulations = ECLSS (air & water) Isolation Studies
Tele-robotics * ISRU, Dust (up to 90 days)
« Robotics, Tele-robotics = ECLSS (air, water,

* ECLSS (only water food)
recycling)

Table 1Phased implementation approach for the ESOL facilities
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VIII. Conclusion

The European Surface Operations Laboratory (ESOL), proposed to be implemented at the DLR/EAC site in
Cologne, has been identified as the most promising lunar analogue concept in order to properly address several of
the identified gaps in Analogue infrastructure and to enhance Europe's capabilities within the international effort of
exploring the Moon.

The ESOL facility is designed in first place as a Lunar Analogue facility, however, the concept is extendable to
other planetary destinations.

The ESOL facility is mainly intended as a ‘Mission-Focused-Analogue’, i.e. for highly integrated simulations
with robots and humans, to test mission scenarios, stress timelines and operations, examine remote operations and
procedures, and train astronauts for lunar surface operations. Relevant facilities already available at EAC and the
DLR Campus, as well as the specialised human capital at EAC, i.e. directly relevant expertise and know-how from
the astronauts, astronaut instructors, flight surgeons, astronaut medical support team, and education & outreach
people, are strong assets in support of the objectives of the ESOL facility.

One of the ESOL Unique Selling Propositions (USP) is that this Artificial Analogue is designed such that the
habitat and traverse simulator are completely integrated with the regolith simulant testbed via a suit port module. I.e.
astronauts can enter/exit the regolith simulant testbed from/to the habitat or the traverse simulator and perform EVA
surface operations activities in their EVA suit mock-ups without having to enter in the ‘outside world’. Another USP
is the gravity off-loading device in combination with a regolith simulant testbed, which is covering a worldwide gap
in Analogue infrastructure.

Although one of the Unique Selling Points is the integrated context of the regolith simulant testbed, the habitat
and the rover simulator, if one component needs to be selected to be built first, it should be the regolith simulant
testbed. This component is addressing most of the ‘driving needs’ and at the same time it is for the public a highly
visible component (i.e. a ‘footprint of the lunar surface’). It can be considered the ‘core’ of the ESOL facility around
which later-on the other components can be built. The European Astronaut Centre (EAC) is currently establishing
this large regolith testbed in collaboration with the German Aerospace Centre (DLR). A half spherical fully
enclosing dome structure (with a diameter of 34m) will house the tesbed.

The ESOL Atrtificial Analogue concept is backed-up by a variety of utilisation scenarios, which address the
‘driving Needs’ of Lunar surface operations identified by more than 100 international Subject Matter Experts
(SMEs) and by analysis of relevant technology Roadmaps, reference missions and literature.
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