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Living architecture: metabolic
applications for next-generation,
selectively programmable bioreactors
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Barbara Imhof’,
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Rachel Armstrong?, loannis leropoulos®, Lauren Wallis®, Jiseon You®, Juan Nogales®

lLIQUIFER Systems Group, Vienna, Austria Vienna, Austria; 2RLQgenerative Architecture, Design and Engineering of
Construction and Architecture, Department of Architecture, KU Leuven: Ghent, Flanders, Belgium; 3SWater &
Environmental Engineering Group, Bolderwood Innovation Campus, University of Southampton, Southampton, United
Kingdom; *Department of Systems Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain

B INTRODUCTION

Modern-day inhabitation, in nations with advanced economies, and
increasingly so in emerging market and developing economies (IMF,
2015), requires an enormous amount of resources for supporting the
desired ‘lifestyles,” such as climatized interior environments, electrification
of lighting, appliances, and other electronic devices (Hidetoshi, 1996; Wei,
2007), or water consumption (Worldometers, 2017; Statista, 2013). Large-
scale infrastructures and services have been conceived and constructed to
deliver a constant supply of electricity, (natural) gas, and water to buildings
and to take away copious amounts of human- and building-generated
waste. Because of global lifestyle choices, and lack of concerted effort to
combat their negative impacts, we find ourselves living in the era of the
Anthropocene: defined by compromised planetary environmental condi-
tions, and challenged ecosystems, brought forth through accumulated hu-
man activity.

Johan Rockstrom (Rockstrom, 2009) argues that there are nine ‘planetary
boundaries’ that should not be transgressed to stay within the ‘safe operating
space’ of Earth’s natural system. Of the nine boundaries that are formulated,
three have already been trespassed, including rate of biodiversity loss, inter-
ference with nitrogen and phosphorus cycles, and climatic change.

Urban and Regional Agriculture. https://doi.org/10.1016/B978-0-12-820286-9.00004-2
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A breach of even one boundary could, and eventually will when not suffi-
ciently addressed, lead to an overall toppling of the entire system which is
largely defined by codependencies of its different subsystems. The nine
boundaries comprise of:

Climate change

Rate of biodiversity loss

Nitrogen cycle and phosphorus cycle
Stratospheric ozone depletion

Ocean acidification

Global freshwater use

Change in land use

Atmospheric aerosol loading
Chemical pollution

PRI R WD

Rockstrom calls for a concerted effort to stop, even reverse, the pattern of
ever-increasing devastation and destruction in these nine categories, with
elevated importance on the three which have already been trespassed. For
this chapter, the H2020 FET-OPEN Living Architecture (Living Architec-
ture, 2016) project is being used as showcase for metabolic applications.
This project demonstrates that it can have an impact on improving current
nitrogen and phosphorus cycles, and on climatic change largely caused by
greenhouse gases. Furthermore, its widespread use could have a profound
impact on the global use of freshwater and chemical pollution.

B NITROGEN AND PHOSPHORUS CYCLE

Nitrogen and phosphorus naturally exist and are critical for the health of hu-
man beings, plants, and the environment (Sengupta, 2015). Both elements
are widely used in agricultural applications. Human-made synthetic fertil-
izers have both nitrogen and phosphorus.

Agricultural systems, largely industrialized and centralized today, are
losing a large percentage of these nutrients in agricultural run-off. This
creates environmental implications both on the production of synthetic fer-
tilizer and further down the line, when these water flows enter natural wa-
terways, where they have a detrimental effect on local ecologies through
eutrophication. This process is common throughout the world and is
caused when algal growth and algal blooms take over bodies of water,
due to a high concentration of nutrients in the water. The decay of dead
algae causes oxygen depletion and reduces its availability for other forms
of aquatic life.
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Nitrogen and phosphorus are found in high concentrations in waste
streams, coming from agricultural run-off and from waste streams from
human habitation, particularly from human excreta. Human waste is one
of the largest suppliers of the nutrients and contributes around 80% of
the nitrogen found in waste streams and about 60% of the phosphorus
(Kirchmann, 1995).

Today, the problem of nitrogen and phosphate nutrients getting ‘stuck’ in
the system falls to the responsibility of wastewater treatment facilities
(WWTFs). Currently, however, many “at the source” methods of extracting
nutrients from nutrient-rich waste streams are being developed, and serve as
viable alternatives to losing these supplies to WWTFs. At the source
methods also reduce the costs associated with wastewater treatment in large,
centralized systems, saving on both energy and chemical use (Kirchmann,
1995; Larsen 1996).

The blackwater fraction of household wastewaters contains 90% of the
overall nitrogen and 90% of the overall phosphorus (Jonsson, 2005) that
is discharged from a household (Spangberg, 2014). The urine fraction of
blackwater, excluding also the flush water, contains around 80% of the over-
all nitrogen supply found in the blackwater and 60% that of the phosphorus
supply. (Nitrogen takes mainly the form of ammonium in urine.) The
composition of urine, therefore, is similar to that which is desired for the
fertilization of plants (Heinonen-Tanski, 2005).

Maurer has concluded that the best way of obtaining the urine fraction, of
human excreta, is achieved through struvite precipitation and ammonia
stripping, and by toilets that are specially designed for separating urine
from fecal matter and toilet paper (Maurer, 2000).

Further treatment of the urine is required based on needs and requirements
and includes Hygienization, volume reduction, stabilization, P-recovery
(Phosphorus), N-recovery (Nitrogen), nutrient removal, and the handling
of micropollutants (Maurer, 2006). No single treatment can achieve all
criteria, and almost all are still in developmental stages; not yet available
in the open market (Maurer, 2006).

Nitrogen

Nitrogen exists naturally in the atmosphere, as a highly stable and nonreac-
tive gas (N). When adding nitrogen into synthetic fertilizers, N is removed
from the atmosphere and is fixed to the medium in a reactive form (including
ammonia, nitrate, and amino acids).
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Nitrogen is a valuable resource for plant growth at the location of growth,
but the remainder that is not utilized by the plant can get lost in environ-
mental cycles. Reactive nitrogen enters the environmental cycle as NHZ
in wastewater causing pollution of waterways and coastal zones and into
the air as N,O causing deterioration of the ozone layer and global warming.

The study led by Rockstrom (2009) declares that currently 121 million TPY
(tonnes per year) of nonreactive N is removed from the atmosphere for hu-
man use. Rockstrom proposes to curtail this amount to 35 million TPY to
come back into a ‘safe operating space.’

Nitrogen can be recovered through processes both localized (e.g., individual
building) and centralized (e.g., WWTF). These processes include: ion-
exchange and adsorption-based processes, bioelectrochemical systems
(such as microbial fuel cells (MFCs)), air stripping, and membrane
separation.

Phosphorus

Phosphorus is a nonrenewable resource found in, and extracted from,
igneous and sedimentary rock. Phosphorus is one of the major plant nutri-
ents in the soil and is used in food production throughout the world. Further,
a deficiency in phosphorus can have a broad range of negative effects on
human health of mind and body.

Significant cost and energy consumption is associated with the extraction
and transportation of phosphorus and its conversion into synthetic fertilizer.

Phosphorus found in waste streams, even in concentrations as low as
0.02 mg/L, can have detrimental impact when freely discharged into rivers,
lakes, and oceans, causing eutrophication, anoxic events, and mass extinc-
tion of aquatic life (Rockstrom, 2009).

Different methods of recovering phosphorus from household waste include
physical filtration and membrane processes, chemical precipitation, acid hy-
drolysis, physical—chemical adsorption, and ion-exchange and biological
assimilation through constructed wetlands.

International and regional standards are increasingly imposed on waste-
water treatment plants, regarding nitrogen and phosphorus removal
(Rockstrom, 2009). Biological nitrification and denitrification and chemical
precipitation are the most common processes used today to remove nitrogen
and phosphorus, respectively. Both processes cannot achieve recovery of ni-
trogen and phosphorus.
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B SELECTIVELY PROGRAMMABLE APPS (LIVING
ARCHITECTURE)

The Living Architecture project (Living Architecture, 2016) builds an appa-
ratus that structurally integrates biological processes into the built environ-
ment and programs them to perform tasks essential to waste management.
The design has built-in flexibility and adaptability and can be programmed
to do different tasks. Tasks are largely defined by initial inputs to the system.
Each waste product type (e.g., urine, gray water) has a general set of attri-
butes that is characterized and then manipulated by and through carefully
designed biological processes.

Living Architecture, a system of three, collaboratively working bioreactors,
is developed as a single (local) architectural solution with the potential to
disrupt the established system of centralized providers of energy (electricity,
fuel, etc.) and water and could eliminate the need for centrally controlled
and operated WWTFs. Using photobioreactors, microbial fuel cells
(MFCs), and synthetic microbial consortia (SMC) in a single setup, the
project demonstrates the transformation potential of turning household waste
(gray water and urine) into valuable resources by providing (through recov-
ery) nutrients useful to agricultural production.

Examples of biological processes being built-in to the physical environment
as programmable applications for performing desired tasks can be illus-
trated by the Pee-Power Toilet, Glastonbury festival in 2015, and the
BIQ building.

The Pee-Power Toilet is an energy-independent system developed on campus
of the University of the West of England (UWE), developed by UWE with
funding from Oxfam and the Bill and Melinda Gates Foundation. The work
aims to provide safety in remote toilets by providing lighting and a sanitary
and effective way of treating human waste in areas where centralized waste
collection services are not available. At International refugee camps, the
Pee-Power toilet is conceived to provide sanitary facilities that can be lighted
autonomously, for safety concerns, by the urine itself. The project was pre-
sented at the Glastonbury festival in 2015, which used specially designed uri-
nals to collect urine from male users and feed it to built-in MFCs. In total, the
Glastonbury prototype used 432 cells to generate on average 300 mW of po-
wer, enough to illuminate the interiors of the urinals (Ieropoulos, 2016).

Arup, in collaboration with Splitterwerk architects, built the first publicly
accessible algae facade for the BIQ House, which served as a form of
micro-agriculture. Energy savings were made within the building through
the solar-thermal effect of algae biomass (Steadman, 2013). A business model
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was created and based on comparing output to input, always using algae and
biomass production (6 kg of biomass a day). These values were both totally
measurable and could be determined easily in a financial way. However,
currently the 6 kilos is not being sold in a commercial way (Wurm, 2017).

Microbial fuel cells

The most important principal underlying the Living Architecture project is
the MFC. MFCs (Bennetto, 1984) are electrochemical devices that convert
the chemical energy of organic feedstock into electricity, via the metabolic
processes of microorganisms, which act as biocatalysts. MFCs are increasing
their commercial traction within the wastewater treatment industry, particu-
larly at utility scale (Nastro, 2014), as well as significant interest in microbial
electrolysis, microbial desalination, and microbial reverse osmosis (Fig. 21.1).

The electricity generated from the MFC can directly support the parasitic
load of the system (pumping, mixing, heating, sensors for condition moni-
toring, etc.) with the expectation that surplus power will be diverted to meet
the demand of the building in which it is installed.

MEFCs consist of two compartments, the anode and the cathode, separated by
a Proton Exchange Membrane (PEM). In the anode chamber, bacteria (micro-
organisms) anaerobically oxidize organic feedstock and in the process release
electrons and cations such as protons. The electrons travel via an external cir-
cuit and cations flow through the PEM to the cathode. The cathode is engi-
neered to maximize the oxygen—reduction potential of the system.

Algae are incorporated in the cathode to generate generous supplies of ox-
ygen. This increase in oxygen increases the oxygen—reduction potential for
attracting electrons. A separate photobioreactor grows the algae which are
then supplied to the cathode, where the oxygen is depleted. There is not sig-
nificant algae growth occurring at the cathode. If the cathode wall chamber
is transparent, then the algae will photosynthesize to supply the cathode
with sufficient O;.

The system can be improved by having control over the metabolic processes
that occur in the anode, knowing exactly what the feedstock is and what
bacteria or microbial consortia (two or more bacterial communities living
symbiotically) can best process the semisolid feedstock.

For the PEM, a variety of tailored ceramic materials have been explored for
their electrical conductivity, luminosity, porosity, texture, and strength in
compression and are fabricated as containment vessels for the anode cham-
bers of the MFC, as well as for the labor modules of SMC.
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Photobioreactor

oxygen reduction
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Algae
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tesesseesssades » Biomass

M FIGURE 21.1 Functional diagram of a Microbial Fuel Cell, credit: Living Architecture Consortium, 2016

In the project Living Architecture, biologists and microbiologists map these
processes to help define the best applications (‘apps’) for performing
different tasks or building services. By selectively manipulating consortia
performance, building systems with high efficiency can be maintained and
different types of waste can be processed locally. These programmed com-
munities can be used in both the anode and cathode.

SMC-based bioreactor

Synthetic Biology is the design and construction of new biological parts, de-
vices, and systems, and the redesign of existing, natural biological systems
for useful purposes. Through Synthetic Biology, entirely new organisms
can be constructed through DNA modification. This change at the organisms’
molecular level creates a new organism, capable of performing specific tasks
that are desired. Consortia of these newly constructed organisms, as well as
well-known preexisting organisms, can be combined, providing a community
of workhorses able to perform many complex and unrelated biological tasks.
Biological Consortia become a critical design item in Living Architecture.
Living organisms are introduced into the system to take over otherwise large
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engineering projects. Biological processes are used to do naturally, what me-
chanical systems do artificially (Fig. 21.2).

The basic SMC design is comprised of two separate modules: (1) a
cyanobacterial-based “farm module” exposed to a light source and (2) a
bacterial-heterotrophic-based “labor module” that is interchangeable and
accessible from in the interior of the building. Escherichia coli and Pseudo-
monas putida, two well-known and widely used biotechnological work-
horses, are included and maintained in the labor module through
engineering synthetic cross-feeding relationships.

The farm module supplies easily metabolized carbon to the labor module,
sustainably feeding the labor module which is further programmed to
perform the desirable biotechnological functions.

Specific targeted functions include the cleaning of gray water and polluted
air by removing inorganic phosphate (Pi) and nitrogen oxides (NOxs),
respectively. Additionally, the labor module is genetically programmed
for producing high value-added substances: products such as biofertilizers
and biodetergents. Four main functions are being identified:

1. Phosphate “cleaning” biobricks: removed Pi in the form of Polyphos-
phate is accumulated in bacterial biomass which can be further used as
biofertilizer (Pi is a well-known limiting nutrient for plants).

2. The NOx-removal-biobrick: the current SMC will be engineered for
efficient removal of NOx from air producing molecular nitrogen (N»). N;
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air / water
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B FIGURE 21.2 Functional diagram of a Synthetic Microbial Consortia Bioreactor, credit: Living Architecture Consortium, 2016
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is an innocuous gas and can be used as nitrogen source by specific micro-
organism strains contributing this way to complete the nitrogen cycle.

3. Biodetergents: Pseudomonas putida will be engineered to efficiently
produce biosurfactants such as rhamnolipids, which can be used as sus-
tainable biodetergents.

4. Serrawettin synthetase (SwrW) in the labor module means producing
the biosurfactant Serrawettin W1, which has additionally plant growth
promoter properties thus enhancing the production of biofertilizer and
biodetergents of the whole SMC.

Microbial consortia and the mapping of the complex interactions that occur
among the different species within the consortia serve as the base knowl-
edge of the Living Architecture project. Based on the knowledge obtained
during the experiments of open and closed wild-type systems, more control-
lable and genetically tractable microbial consortia can be synthetically
designed.

The Living Architecture team uses the online open platform Doulix (2017) for
designing synthetic biology constructs choosing among standard biological
parts and synthesize them using the assembling technology of individual choice.

Photobioreactor

A photobioreactor is a closed system using microorganisms to generate ox-
ygen and biomass from light, and carbon dioxide through the biological
process of photosynthesis (Chen, 2011). The Living Architecture photobior-
eactor is supplied with nutrients for the algae, light, and CO,; and the outputs
are O, and biomass.

A photobioreactor can therefore be incorporated to the overall system as a
separate reactor, connected to the MFC and SMC, using algae as a photo-
synthesizing agent to produce oxygen. It is sized to provide a sufficient
amount of O, to the MFC for continuous operation.

B ARCHITECTURE

The Living Architecture building element is a set of modular bioreactor
units (MFC, SMC, photobioreactor) combined into one hybrid system. It
is planned for immediate use and integration into modern spaces with tradi-
tional utilities. This hybrid system is in effect, a complex managed micro-
cosm (or microecology) wherein a defined set of factors (e.g., illuminance,
temperature, pH, etc.) are continuously regulated to create and maintain the
desired environmental conditions that support the biotic (living) system
outcomes.
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The project tackles common concerns from an architectural scale, one based
in building a solution, brick by brick, that connects with and to its user, not
only visually, but also spatially.

A free-standing partition composed of modular bioreactor units was demon-
strated in May 2019 (visualization example (Fig. 21.3), breadboard model
(Figs. 21.4 and 21.5)). With further development of the system, beyond
the scope of the current project, the Living Architecture interior partition
wall can shift to the exterior envelope of the building, decreasing the sys-
tem’s reliance on external energy sources of light, allowing the system to
become more passive using the sunlight to power the photosynthesis process
activating the entire system.

Building a bioreactor architecture will proceed incrementally, first based on
MEFC arrays and testing different feedstocks, then building an integrated
MEFC/photobioreactor system as illustrated in Fig. 21.1, which will comprise
of nine MFC-based bricks, a photobioreactor, and a settlement tank. Relative
dimensions and optimization of feedstock are being determined experimen-
tally, and as different set-ups and prototypes are built, they will be fitted with
the required actuators and sensors.

In the brick, small MFC units will be connected to MFC stacks to make po-
wer generation more efficient, and miniaturization and multiplication will

,\_—.":“ . " p
M FIGURE 21.3 First test prototype 1 visualization for a microbial fuel cell, vertically and horizontally stacked, displayed as modular building element. It can be
extended with an algae bioreactor and an SMC. Credit: Living architecture consortium, visualization: LIQUIFER Systems Group, 2017.
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__J
B FIGURE 21.4 First test prototype 1 for a microbial fuel cell, vertically and horizontally stackable
modular building element. Credit: Living architecture consortium, photo: LIQUIFER Systems Group, 2017.

- P e
M FIGURE 21.5 First test prototype 2 for a microbial fuel cell, indirect stackable modular building
element. Credit: Living Architecture Consortium, photo: Simone ferracing, University of Newcastle (2017).
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be used as scale-up method. Recent prototype design approaches foresee the
immersion of several small MFC anode chambers in a single larger cathode
chamber. The MFC cathode chamber represents the multifunctional brick
component, serving simultaneously as cathode, photobioreactor, and SMC
farm module.

Different SMCs are developed within the project, each programmed to
perform a specific task. They are interchangeable and interface with other
components of the partition wall for reciprocal benefit.

The Living Architecture modular unit is an array of individual reactors
acting in parallel. Each has inputs and outputs, which require a high level
of process and control modeling in order to maintain healthy and functional
ecologies throughout the system. The reactor outputs will include polished
water (the surplus nutrients are cycled back through the system), fertilizer
(containing nitrogen, phosphate/polyphosphate, organic matter), recover-
able biomass for extractable organic products, for example, next-
generation biodegradable detergents, oxygen, and electrical output.

B SCENARIOS

For development beyond the scope of the actual project, which demon-
strated only a single prototype of a bioreactor array, architectural and spec-
ulative scenarios were developed to transfer the Living Architecture
modular technology from building, to the urban context, expanding its
use in larger operational fields, assuming real users and real local environ-
mental parameters.

Three different examples are discussed for use of Living Architecture in the
context of: (1) a single housing unit; (2) a building as an autonomous
habitat (exemplified by SHEE for use in remote locations on earth and as
analogue facility for space habitation); (3) large-scale urban infrastructures
with potential to replace traditional WWTFs.

Tables 21.1—21.3 set the main parameters of the three scenarios next to each
other for comparison. The scenario descriptions are structured into external
and internal factors, and text highlighted in “blue” identifies commonalities
between the three scenarios. External factors describe the location context
for each scenario type, being either urban, rural, or remote; and are further
defined by contextual climate and society. Internal factors discuss aspects
of modularity and personalization, and aspects of maintenance which is of
high importance in systems involving living organisms. Therefore, while
designing Living Architecture systems, the focus must lie in solving ques-
tions of who will care for the system (individual, collective, external service)
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and whether the tenants will be equipped with the tools and knowledge that
are required to repair malfunctions of the system. Key parameters for a func-
tional design are, therefore, redundancy, robustness, and high automation of

the system.

External factors

Internal factors

(1) Housing unit
Partition wall

Scattered, individual use in
urban (dense) to rural
areas

Integration in existing
buildings and integration
into new building

Temperate climate

Affluent societies

Modular system to define
size of partition wall

From one system fits all to
personalized, specific
design all levels acceptable

Individual and collective
commitment possible

Robust and highly
automated, external
service to repair

Aim at redundancy and
maintenance free

Table 21.1 Scenario parameters of external and internal factors.

(2) Building
Life-support system

Remote areas

Integration in SHEE

Extreme environments
such as earth poles areas,
jungle, deserts, outer space
Special groups in
specialized fields of work
and/or remote areas
Modular system to be
integrated in modular
interior of Life Support
Systems of SHEE
Personalized, specific
design to fit into SHEE

Individual commitment
for users to keep system
functioning

Robust and highly
automated, high
importance of maintaining
all components

Aim at redundancy and
maintenance free

(3) City
Self-sustainable WWTF

Ubiquitous use
throughout urban area
both private and public

Integration into existing
constructions, significant
component of new
building constructions,
infrastructural
applications—connectors
between buildings, for
incorporation into bridges
and other public
infrastructure

Temperate climate

Affluent societies

Modular system designed
and fabricated as ‘building
blocks’ for constructing
large-scale projects

Meets general
requirements for
processing all factions of
human wastewater
Communal commitment
required

Robust and highly
automated, municipal
service to repair and
maintain

Aim at redundancy and
maintenance free
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Economic goals/values

Social goals/values

Ecological goals/values

Table 21.2 Economic, social, and ecological goals.

(1) Housing unit
Partition wall

Improve individual and/
or communal economic
situation—Value medium

Improve social situation
of individual user—Value
low

Improve intercommunal
social situation—value
medium

Helps to foster awareness
of dwindling
resources—Value high

Reduce depletion of local
natural resources

Fosters regional,
national, global
environmental
protection—Value high

(2) Building
Life-support system

In remote areas and
extreme environments
closed-loop systems are
essential and
independent of economic
goals or values—value
high

Does not play a major
role due to
remoteness—Value low

Reduce depletion of local
natural resources

Fosters regional,
national, global
environmental
protection—Value high

(3) City
Self-sustainable WWTF

Improve communal
economic
situation—Value high

Improve communal social
situation—value high
Helps to foster awareness
of dwindling
resources—Value high

Reduce depletion of local
natural resources

Fosters regional,
national, global
environmental
protection—Value high

Living Architecture is a highly adaptive, programmable, and flexible
“building element,” with the critical function to receive waste products
in order to produce utilizable resources. It provides both the “hardware”
and “software” for a functioning system. The hardware is comprised of
the containment units of the MFC, SMC, photobioreactor, their physicality,
materiality, and interfaces. The software is defined by the synthetic biolog-
ical parts that are included into the system, constructed to perform specific
tasks.

With these parameters defining the hardware and software components of
the system, Living Architecture is flexible to be integrated into existing sys-
tems (Scenario (1)), can be configured to act as human life-support system
(Scenario (2)), and can be fortified and multiplied for use in large-scale
infrastructural projects (Scenario (3)).
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Utility-based values

Willingness to invest into
indirect use
values—usually
nonconsumptive, indirect
benefits

Table 21.3 Utility and bequest values.

(1) Housing unit
Partition wall

Direct use values: Direct
use/consumption of
goods and
services—value high

Bequest values:
Satisfaction in preserving
natural environments for
future generations—value
potentially high

Aesthetic values: algae
bioreactor offers attractive
and intriguing green
light—value potentially
high

(2) Building
Life-support system

Direct use values: Direct
use/consumption of
goods and
services—value high

Bequest values: Relevant
in remote areas because
external environment
needs to be
protected—value
potentially high

Aesthetic values: algae
bioreactor offers attractive
and intriguing green
light—value potentially
high

(3) City
Self-sustainable WWTF

Direct (and indirect) use
values: Direct use/
consumption of goods
and services—value high

Bequest values: In long-
run, all waste produced
by human metabolic
systems (and other
wastewater) are
transformed through
metabolic activities of
synthetic biology parts
into valuable
resources—value
potentially high
Aesthetic values: algae
bioreactor offers attractive
and intriguing green
light—value potentially
high can provide
secondary services at the
urban scale including
visual continuity of the
city-scape and orientation
markers—value medium

Scenario (1): Housing unit/Partition wall.

Now. Within scope of project; proof-of-concept May 2019.

Scenario (2): Building/Life-support system.

Near Future. Lots of developments are being made in the realm (/field) of
closed-loop systems. In this scenario, we are using SHEE (Self-
deployable Habitat for Extreme Environments) (see Fig. 21.6), a project
built through the Seventh European Framework Programme between 2013
and 2015. SHEE can be used as an extraterrestrial mission/operation base
and in extreme terrestrial environments, for example, in arctic or jungle re-
gions where high-tech units are needed. SHEE is a 28 m* habitat, fitted with
all necessary facilities and life-support systems for two persons (Imhof,
2015). The users living in SHEE with a Living Architecture system must
have a basic understanding of its functions and be able to tend it.
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M FIGURE 21.6 SHEE in the Antarctic, visualization: Ondrej Doule, SPIN, 2015.

Scenario (3): Self-sustainable WWTF.

Long-term aims. In the future, truly sustainable cities must and will actively
and sustainably deal with metabolic human waste. Living Architecture,
scaled to an urban scale, built, applied, incorporated, paving everything—
living bricks, scrubbing valuable waste to produce water, electricity, and
valuable nutrients and biomass, will ultimately replace centralized waste
treatment facilities detrimental to our environment through its large energy
demands and heavy use of chemicals.

Facing climatic challenges, and an ever-growing population, most nations
and earth citizens have become aware of the critical environment we now
inhabit. How can we “value” renewable energy systems such as the one pro-
posed? In the scenario development three strains of values are considered:
economic, social, and environmental.

Economic goals or values (see Table 21.3) are difficult to estimate based on
the prototype still under development. One can speculate that the Living Ar-
chitecture prototype will provide individual-user empowerment through the
production of off-grid resources such as electricity, clean water, and waste
treatment. On a communal level, one could envisage that many Living Ar-
chitecture systems could stabilize local economies, especially in case of
risky local support chains which is less significant in Europe than in other
parts of the world. For implementation in remote locations with little or
no infrastructure, closed-loop systems solutions are more economic in the
long term. Systems which require bringing power and resources to a remote
place entail effort and costs. Therefore, economic value is implicit in a more
sustainable self-sufficient system. In the urban context, monetary resources
spent to build and maintain conventional WWTFs, including their net-
worked infrastructures for channeling waste, centralized facilities, energy
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needs, personnel costs, and all other related costs, can be diverted instead to
the fabrication and maintenance of Living Architecture.

Social values of individual autonomy, networks, safety, health, and status
could be improved by using the Living Architecture system. The same ap-
plies to the communal level where such a bioreactor array could stabilize
local societies and improve communal autonomy and networks. Ecologic
values provide reasons for using and for developing these bioreactors:
they promote sustainable energy generation, water management, and waste
treatment; reduce local natural resources depletion; and foster regional, na-
tional, and global environmental protection. Regarding the extreme environ-
ment scenario of SHEE, ecologic values are similarly present but much
more explicit when living in an environment which is scarce of resources.

The last group of scenario parameters (see Table 21.3) regarding values re-
fers to utility-based values and to indirect benefits such as bequest and
aesthetic values. For all scenarios, there is a direct use of the bioreactors
which deliver a specific set of services. With all systems, products, and ideas
supporting sustainability and resilience of our living environment, we can
draw bequest values, satisfaction from preserving a natural environment
(for future generations). To imagine the Living Architecture bioreactors as
an interior partition wall, as a volume filled with soft, greenish glowing light,
a certain aesthetic attractiveness can be drawn. Especially, in a remote and
extreme environment where stimuli offered by an exterior landscape are
rare, greenish light and water movement inside a confined space can be bene-
ficial to the well-being of the crew, or in large-scale urban applications, can
provide continuous and fluid infrastructural works that are not only purpose-
ful, but also intriguing in a visual way.

B LIVING ARCHITECTURE ENVISIONED TODAY,
REALITY TOMORROW

Living Architecture was developed and demonstrated at a small scale,
capable of being integrated into existing structures (1). Yet, Scenarios (2)
and (3) offer products and services beyond our and the industry’s current
means. The goal of the architectural scenarios is to further propel the imag-
ination through artistic speculative means. As competencies in these fields
increase, modular mass deployment in terrestrial cities, discussed in Sce-
nario (3), could be envisioned, as autonomous habitats for extreme environ-
ments in off-grid living as well, discussed in Scenario (2).
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Reaching these goals would have a gigantic impact in both developed and
emerging nations. The valuable resources that are produced come from the
renewable energy source of human consumption and metabolism, placing
natural human processes into a partially ‘closed-loop’ system for producing
electricity and biomass, for recovering valuable nutrients, for increasing the
oxygen level in the atmosphere, and for providing clean water for doing
laundry, dishwashing, or flushing toilets.

Living Architecture today creates mini-ecosystems for incorporation into
singular architectural entities. Tomorrow, the Living Architecture bioreactor
system prototype, matured by foreseeable dramatic advancements in sci-
ence, technology, synthetic biology, and society, will be transformable
into forms and applications that are shaped by the contexts and the people
they serve, whose programming of them will be limited only by their ability
to imagine their potential.
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